JavaScript 模块的循环加载

转自作者: 阮一峰

http://www.ruanyifeng.com/blog/2015/11/circular-dependency.html

“循环加载”(circular dependency)指的是,a脚本的执行依赖b脚本,而b脚本的执行又依赖a脚本。


// a.js
var b = require('b');

// b.js
var a = require('a');

通常,”循环加载”表示存在强耦合,如果处理不好,还可能导致递归加载,使得程序无法执行,因此应该避免出现。

但是实际上,这是很难避免的,尤其是依赖关系复杂的大项目,很容易出现a依赖b,b依赖c,c又依赖a这样的情况。这意味着,模块加载机制必须考虑”循环加载”的情况。

本文介绍JavaScript语言如何处理”循环加载”。目前,最常见的两种模块格式CommonJS和ES6,处理方法是不一样的,返回的结果也不一样。

一、CommonJS模块的加载原理

介绍ES6如何处理”循环加载”之前,先介绍目前最流行的CommonJS模块格式的加载原理。

CommonJS的一个模块,就是一个脚本文件。require命令第一次加载该脚本,就会执行整个脚本,然后在内存生成一个对象。

{
  id: '...',
  exports: { ... },
  loaded: true,
  ...
}

上面代码中,该对象的id属性是模块名,exports属性是模块输出的各个接口,loaded属性是一个布尔值,表示该模块的脚本是否执行完毕。其他还有很多属性,这里都省略了。(详细介绍情参见《require() 源码解读》。)

以后需要用到这个模块的时候,就会到exports属性上面取值。即使再次执行require命令,也不会再次执行该模块,而是到缓存之中取值。

二、CommonJS模块的循环加载

CommonJS模块的重要特性是加载时执行,即脚本代码在require的时候,就会全部执行。CommonJS的做法是,一旦出现某个模块被”循环加载”,就只输出已经执行的部分,还未执行的部分不会输出。

让我们来看,官方文档里面的例子。脚本文件a.js代码如下。

exports.done = false;
var b = require('./b.js');
console.log('在 a.js 之中,b.done = %j', b.done);
exports.done = true;
console.log('a.js 执行完毕');

上面代码之中,a.js脚本先输出一个done变量,然后加载另一个脚本文件b.js。注意,此时a.js代码就停在这里,等待b.js执行完毕,再往下执行。

再看b.js的代码。

exports.done = false;
var a = require('./a.js');
console.log('在 b.js 之中,a.done = %j', a.done);
exports.done = true;
console.log('b.js 执行完毕');

上面代码之中,b.js执行到第二行,就会去加载a.js,这时,就发生了”循环加载”。系统会去a.js模块对应对象的exports属性取值,可是因为a.js还没有执行完,从exports属性只能取回已经执行的部分,而不是最后的值。

a.js已经执行的部分,只有一行。

exports.done = false;

因此,对于b.js来说,它从a.js只输入一个变量done,值为false。

然后,b.js接着往下执行,等到全部执行完毕,再把执行权交还给a.js。于是,a.js接着往下执行,直到执行完毕。我们写一个脚本main.js,验证这个过程。

var a = require('./a.js');
var b = require('./b.js');
console.log('在 main.js 之中, a.done=%j, b.done=%j', a.done, b.done);

执行main.js,运行结果如下。

$ node main.js

在 b.js 之中,a.done = false
b.js 执行完毕
在 a.js 之中,b.done = true
a.js 执行完毕
在 main.js 之中, a.done=true, b.done=true

上面的代码证明了两件事。一是,在b.js之中,a.js没有执行完毕,只执行了第一行。二是,main.js执行到第二行时,不会再次执行b.js,而是输出缓存的b.js的执行结果,即它的第四行。

exports.done = true;

三、ES6模块的循环加载

ES6模块的运行机制与CommonJS不一样,它遇到模块加载命令import时,不会去执行模块,而是只生成一个引用。等到真的需要用到时,再到模块里面去取值。

因此,ES6模块是动态引用,不存在缓存值的问题,而且模块里面的变量,绑定其所在的模块。请看下面的例子。


// m1.js
export var foo = 'bar';
setTimeout(() => foo = 'baz', 500);

// m2.js
import {foo} from './m1.js';
console.log(foo);
setTimeout(() => console.log(foo), 500);

上面代码中,m1.js的变量foo,在刚加载时等于bar,过了500毫秒,又变为等于baz。

让我们看看,m2.js能否正确读取这个变化。

$ babel-node m2.js

bar
baz

上面代码表明,ES6模块不会缓存运行结果,而是动态地去被加载的模块取值,以及变量总是绑定其所在的模块。

这导致ES6处理”循环加载”与CommonJS有本质的不同。ES6根本不会关心是否发生了”循环加载”,只是生成一个指向被加载模块的引用,需要开发者自己保证,真正取值的时候能够取到值。

请看下面的例子(摘自 Dr. Axel Rauschmayer 的《Exploring ES6》)。


// a.js
import {bar} from './b.js';
export function foo() {
  bar();  
  console.log('执行完毕');
}
foo();

// b.js
import {foo} from './a.js';
export function bar() {  
  if (Math.random() > 0.5) {
    foo();
  }
}

按照CommonJS规范,上面的代码是没法执行的。a先加载b,然后b又加载a,这时a还没有任何执行结果,所以输出结果为null,即对于b.js来说,变量foo的值等于null,后面的foo()就会报错。

但是,ES6可以执行上面的代码。

$ babel-node a.js

执行完毕

a.js之所以能够执行,原因就在于ES6加载的变量,都是动态引用其所在的模块。只要引用是存在的,代码就能执行。

我们再来看ES6模块加载器SystemJS给出的一个例子。


// even.js
import { odd } from './odd'
export var counter = 0;
export function even(n) {
  counter++;
  return n == 0 || odd(n - 1);
}

// odd.js
import { even } from './even';
export function odd(n) {
  return n != 0 && even(n - 1);
}

上面代码中,even.js里面的函数foo有一个参数n,只要不等于0,就会减去1,传入加载的odd()。odd.js也会做类似操作。

运行上面这段代码,结果如下。

$ babel-node
> import * as m from './even.js';
> m.even(10);
true
> m.counter
6
> m.even(20)
true
> m.counter
17

上面代码中,参数n从10变为0的过程中,foo()一共会执行6次,所以变量counter等于6。第二次调用even()时,参数n从20变为0,foo()一共会执行11次,加上前面的6次,所以变量counter等于17。

这个例子要是改写成CommonJS,就根本无法执行,会报错。


// even.js
var odd = require('./odd');
var counter = 0;
exports.counter = counter;
exports.even = function(n) {
  counter++;
  return n == 0 || odd(n - 1);
}

// odd.js
var even = require('./even').even;
module.exports = function(n) {
  return n != 0 && even(n - 1);
}

上面代码中,even.js加载odd.js,而odd.js又去加载even.js,形成”循环加载”。这时,执行引擎就会输出even.js已经执行的部分(不存在任何结果),所以在odd.js之中,变量even等于null,等到后面调用even(n-1)就会报错。

$ node
> var m = require('./even');
> m.even(10)
TypeError: even is not a function

[说明] 本文是我写的《ECMAScript 6入门》第20章《Module》中的一节。

(完)

npm scripts 使用指南

Node 开发离不开 npm,而脚本功能是 npm 最强大、最常用的功能之一。

本文介绍如何使用 npm 脚本(npm scripts)。

一、什么是 npm 脚本?

npm 允许在package.json文件里面,使用scripts字段定义脚本命令。

{
  // ...
  "scripts": {
    "build": "node build.js"
  }
}

上面代码是package.json文件的一个片段,里面的scripts字段是一个对象。它的每一个属性,对应一段脚本。比如,build命令对应的脚本是node build.js。

命令行下使用npm run命令,就可以执行这段脚本。

$ npm run build
# 等同于执行
$ node build.js

这些定义在package.json里面的脚本,就称为 npm 脚本。它的优点很多。

  • 项目的相关脚本,可以集中在一个地方。
  • 不同项目的脚本命令,只要功能相同,就可以有同样的对外接口。用户不需要知道怎么测试你的项目,只要运行npm run test即可。
  • 可以利用 npm 提供的很多辅助功能。

查看当前项目的所有 npm 脚本命令,可以使用不带任何参数的npm run命令。

$ npm run

二、原理

npm 脚本的原理非常简单。每当执行npm run,就会自动新建一个 Shell,在这个 Shell 里面执行指定的脚本命令。因此,只要是 Shell(一般是 Bash)可以运行的命令,就可以写在 npm 脚本里面。

比较特别的是,npm run新建的这个 Shell,会将当前目录的node_modules/.bin子目录加入PATH变量,执行结束后,再将PATH变量恢复原样。

这意味着,当前目录的node_modules/.bin子目录里面的所有脚本,都可以直接用脚本名调用,而不必加上路径。比如,当前项目的依赖里面有 Mocha,只要直接写mocha test就可以了。

"test": "mocha test"

而不用写成下面这样。

"test": "./node_modules/.bin/mocha test"

由于 npm 脚本的唯一要求就是可以在 Shell 执行,因此它不一定是 Node 脚本,任何可执行文件都可以写在里面。

npm 脚本的退出码,也遵守 Shell 脚本规则。如果退出码不是0,npm 就认为这个脚本执行失败。

三、通配符

由于 npm 脚本就是 Shell 脚本,因为可以使用 Shell 通配符。

"lint": "jshint *.js"
"lint": "jshint **/*.js"

上面代码中,*表示任意文件名,**表示任意一层子目录。

如果要将通配符传入原始命令,防止被 Shell 转义,要将星号转义。

"test": "tap test/\*.js"

四、传参

向 npm 脚本传入参数,要使用–标明。

"lint": "jshint **.js"

向上面的npm run lint命令传入参数,必须写成下面这样。

$ npm run lint --  --reporter checkstyle > checkstyle.xml

也可以在package.json里面再封装一个命令。

"lint": "jshint **.js",
"lint:checkstyle": "npm run lint -- --reporter checkstyle > checkstyle.xml"

五、执行顺序

如果 npm 脚本里面需要执行多个任务,那么需要明确它们的执行顺序。

如果是并行执行(即同时的平行执行),可以使用&符号。

$ npm run script1.js & npm run script2.js

如果是继发执行(即只有前一个任务成功,才执行下一个任务),可以使用&&符号。

$ npm run script1.js && npm run script2.js

这两个符号是 Bash 的功能。此外,还可以使用 node 的任务管理模块:script-runnernpm-run-allredrun

六、默认值

一般来说,npm 脚本由用户提供。但是,npm 对两个脚本提供了默认值。也就是说,这两个脚本不用定义,就可以直接使用。

"start": "node server.js",
"install": "node-gyp rebuild"

上面代码中,npm run start的默认值是node server.js,前提是项目根目录下有server.js这个脚本;npm run install的默认值是node-gyp rebuild,前提是项目根目录下有binding.gyp文件。

七、钩子

npm 脚本有pre和post两个钩子。举例来说,build脚本命令的钩子就是prebuild和postbuild。

"prebuild": "echo I run before the build script",
"build": "cross-env NODE_ENV=production webpack",
"postbuild": "echo I run after the build script"

用户执行npm run build的时候,会自动按照下面的顺序执行。

npm run prebuild && npm run build && npm run postbuild

因此,可以在这两个钩子里面,完成一些准备工作和清理工作。下面是一个例子。

"clean": "rimraf ./dist && mkdir dist",
"prebuild": "npm run clean",
"build": "cross-env NODE_ENV=production webpack"

npm 默认提供下面这些钩子。

  • prepublish,postpublish
  • preinstall,postinstall
  • preuninstall,postuninstall
  • preversion,postversion
  • pretest,posttest
  • prestop,poststop
  • prestart,poststart
  • prerestart,postrestart

自定义的脚本命令也可以加上pre和post钩子。比如,myscript这个脚本命令,也有premyscript和postmyscript钩子。不过,双重的pre和post无效,比如prepretest和postposttest是无效的。

npm 提供一个npm_lifecycle_event变量,返回当前正在运行的脚本名称,比如pretest、test、posttest等等。所以,可以利用这个变量,在同一个脚本文件里面,为不同的npm scripts命令编写代码。请看下面的例子。

const TARGET = process.env.npm_lifecycle_event;

if (TARGET === 'test') {
  console.log(`Running the test task!`);
}

if (TARGET === 'pretest') {
  console.log(`Running the pretest task!`);
}

if (TARGET === 'posttest') {
  console.log(`Running the posttest task!`);
}

注意,prepublish这个钩子不仅会在npm publish命令之前运行,还会在npm install(不带任何参数)命令之前运行。这种行为很容易让用户感到困惑,所以 npm 4 引入了一个新的钩子prepare,行为等同于prepublish,而从 npm 5 开始,prepublish将只在npm publish命令之前运行。

八、简写形式

四个常用的 npm 脚本有简写形式。

  • npm start是npm run start
  • npm stop是npm run stop的简写
  • npm test是npm run test的简写
  • npm restart是npm run stop && npm run restart && npm run start的简写

npm start、npm stop和npm restart都比较好理解,而npm restart是一个复合命令,实际上会执行三个脚本命令:stop、restart、start。具体的执行顺序如下。

  1. prerestart
  2. prestop
  3. stop
  4. poststop
  5. restart
  6. prestart
  7. start
  8. poststart
  9. postrestart

九、变量

npm 脚本有一个非常强大的功能,就是可以使用 npm 的内部变量。

首先,通过npm_package_前缀,npm 脚本可以拿到package.json里面的字段。比如,下面是一个package.json。

{
  "name": "foo", 
  "version": "1.2.5",
  "scripts": {
    "view": "node view.js"
  }
}

那么,变量npm_package_name返回foo,变量npm_package_version返回1.2.5。


// view.js
console.log(process.env.npm_package_name); // foo
console.log(process.env.npm_package_version); // 1.2.5

上面代码中,我们通过环境变量process.env对象,拿到package.json的字段值。如果是 Bash 脚本,可以用$npm_package_name和$npm_package_version取到这两个值。

npm_package_前缀也支持嵌套的package.json字段。

  "repository": {
    "type": "git",
    "url": "xxx"
  },
  scripts: {
    "view": "echo $npm_package_repository_type"
  }

上面代码中,repository字段的type属性,可以通过npm_package_repository_type取到。

下面是另外一个例子。

"scripts": {
  "install": "foo.js"
}

上面代码中,npm_package_scripts_install变量的值等于foo.js。

然后,npm 脚本还可以通过npm_config_前缀,拿到 npm 的配置变量,即npm config get xxx命令返回的值。比如,当前模块的发行标签,可以通过npm_config_tag取到。

"view": "echo $npm_config_tag",

注意,package.json里面的config对象,可以被环境变量覆盖。

{ 
  "name" : "foo",
  "config" : { "port" : "8080" },
  "scripts" : { "start" : "node server.js" }
}

上面代码中,npm_package_config_port变量返回的是8080。这个值可以用下面的方法覆盖。

$ npm config set foo:port 80

最后,env命令可以列出所有环境变量。

"env": "env"

十、常用脚本示例


// 删除目录
"clean": "rimraf dist/*",

// 本地搭建一个 HTTP 服务
"serve": "http-server -p 9090 dist/",

// 打开浏览器
"open:dev": "opener http://localhost:9090",

// 实时刷新
 "livereload": "live-reload --port 9091 dist/",

// 构建 HTML 文件
"build:html": "jade index.jade > dist/index.html",

// 只要 CSS 文件有变动,就重新执行构建
"watch:css": "watch 'npm run build:css' assets/styles/",

// 只要 HTML 文件有变动,就重新执行构建
"watch:html": "watch 'npm run build:html' assets/html",

// 部署到 Amazon S3
"deploy:prod": "s3-cli sync ./dist/ s3://example-com/prod-site/",

// 构建 favicon
"build:favicon": "node scripts/favicon.js",

十一、参考链接

(完)

文档信息

JavaScript 内存泄漏教程

转自作者: 阮一峰    

原文地址:http://www.ruanyifeng.com/blog/2017/04/memory-leak.html

一、什么是内存泄漏?

程序的运行需要内存。只要程序提出要求,操作系统或者运行时(runtime)就必须供给内存。

对于持续运行的服务进程(daemon),必须及时释放不再用到的内存。否则,内存占用越来越高,轻则影响系统性能,重则导致进程崩溃。

不再用到的内存,没有及时释放,就叫做内存泄漏(memory leak)。

有些语言(比如 C 语言)必须手动释放内存,程序员负责内存管理。

char * buffer;
buffer = (char*) malloc(42);
// Do something with buffer
free(buffer);

上面是 C 语言代码,malloc方法用来申请内存,使用完毕之后,必须自己用free方法释放内存。

这很麻烦,所以大多数语言提供自动内存管理,减轻程序员的负担,这被称为”垃圾回收机制”(garbage collector)。

二、垃圾回收机制

垃圾回收机制怎么知道,哪些内存不再需要呢?

最常使用的方法叫做“引用计数”(reference counting):语言引擎有一张”引用表”,保存了内存里面所有的资源(通常是各种值)的引用次数。如果一个值的引用次数是0,就表示这个值不再用到了,因此可以将这块内存释放。

上图中,左下角的两个值,没有任何引用,所以可以释放。

如果一个值不再需要了,引用数却不为0,垃圾回收机制无法释放这块内存,从而导致内存泄漏。

const arr = [1, 2, 3, 4];
console.log('hello world');

上面代码中,数组[1, 2, 3, 4]是一个值,会占用内存。变量arr是仅有的对这个值的引用,因此引用次数为1。尽管后面的代码没有用到arr,它还是会持续占用内存。

如果增加一行代码,解除arr对[1, 2, 3, 4]引用,这块内存就可以被垃圾回收机制释放了。

let arr = [1, 2, 3, 4];
console.log('hello world');
arr = null;

上面代码中,arr重置为null,就解除了对[1, 2, 3, 4]的引用,引用次数变成了0,内存就可以释放出来了。

因此,并不是说有了垃圾回收机制,程序员就轻松了。你还是需要关注内存占用:那些很占空间的值,一旦不再用到,你必须检查是否还存在对它们的引用。如果是的话,就必须手动解除引用。

三、内存泄漏的识别方法

怎样可以观察到内存泄漏呢?

经验法则是,如果连续五次垃圾回收之后,内存占用一次比一次大,就有内存泄漏。这就要求实时查看内存占用。

3.1 浏览器

Chrome 浏览器查看内存占用,按照以下步骤操作。

  1. 打开开发者工具,选择 Timeline 面板
  2. 在顶部的Capture字段里面勾选 Memory
  3. 点击左上角的录制按钮。
  4. 在页面上进行各种操作,模拟用户的使用情况。
  5. 一段时间后,点击对话框的 stop 按钮,面板上就会显示这段时间的内存占用情况。

如果内存占用基本平稳,接近水平,就说明不存在内存泄漏。

反之,就是内存泄漏了。

3.2 命令行

命令行可以使用 Node 提供的process.memoryUsage方法。

console.log(process.memoryUsage());
// { rss: 27709440,
//  heapTotal: 5685248,
//  heapUsed: 3449392,
//  external: 8772 }

process.memoryUsage返回一个对象,包含了 Node 进程的内存占用信息。该对象包含四个字段,单位是字节,含义如下。

  • rss(resident set size):所有内存占用,包括指令区和堆栈。
  • heapTotal:”堆”占用的内存,包括用到的和没用到的。
  • heapUsed:用到的堆的部分。
  • external: V8 引擎内部的 C++ 对象占用的内存。

判断内存泄漏,以heapUsed字段为准。

四、WeakMap

前面说过,及时清除引用非常重要。但是,你不可能记得那么多,有时候一疏忽就忘了,所以才有那么多内存泄漏。

最好能有一种方法,在新建引用的时候就声明,哪些引用必须手动清除,哪些引用可以忽略不计,当其他引用消失以后,垃圾回收机制就可以释放内存。这样就能大大减轻程序员的负担,你只要清除主要引用就可以了。

ES6 考虑到了这一点,推出了两种新的数据结构:WeakSetWeakMap。它们对于值的引用都是不计入垃圾回收机制的,所以名字里面才会有一个”Weak”,表示这是弱引用。

下面以 WeakMap 为例,看看它是怎么解决内存泄漏的。

const wm = new WeakMap();

const element = document.getElementById('example');

wm.set(element, 'some information');
wm.get(element) // "some information"

上面代码中,先新建一个 Weakmap 实例。然后,将一个 DOM 节点作为键名存入该实例,并将一些附加信息作为键值,一起存放在 WeakMap 里面。这时,WeakMap 里面对element的引用就是弱引用,不会被计入垃圾回收机制。

也就是说,DOM 节点对象的引用计数是1,而不是2。这时,一旦消除对该节点的引用,它占用的内存就会被垃圾回收机制释放。Weakmap 保存的这个键值对,也会自动消失。

基本上,如果你要往对象上添加数据,又不想干扰垃圾回收机制,就可以使用 WeakMap。

五、WeakMap 示例

WeakMap 的例子很难演示,因为无法观察它里面的引用会自动消失。此时,其他引用都解除了,已经没有引用指向 WeakMap 的键名了,导致无法证实那个键名是不是存在。

我一直想不出办法,直到有一天贺师俊老师提示,如果引用所指向的值占用特别多的内存,就可以通过process.memoryUsage方法看出来。

根据这个思路,网友 vtxf 补充了下面的例子

首先,打开 Node 命令行。

$ node --expose-gc

上面代码中,–expose-gc参数表示允许手动执行垃圾回收机制。

然后,执行下面的代码。


// 手动执行一次垃圾回收,保证获取的内存使用状态准确
> global.gc(); 
undefined

// 查看内存占用的初始状态,heapUsed 为 4M 左右
> process.memoryUsage(); 
{ rss: 21106688,
  heapTotal: 7376896,
  heapUsed: 4153936,
  external: 9059 }

> let wm = new WeakMap();
undefined

> let b = new Object();
undefined

> global.gc();
undefined

// 此时,heapUsed 仍然为 4M 左右
> process.memoryUsage(); 
{ rss: 20537344,
  heapTotal: 9474048,
  heapUsed: 3967272,
  external: 8993 }

// 在 WeakMap 中添加一个键值对,
// 键名为对象 b,键值为一个 5*1024*1024 的数组  
> wm.set(b, new Array(5*1024*1024));
WeakMap {}

// 手动执行一次垃圾回收
> global.gc();
undefined

// 此时,heapUsed 为 45M 左右
> process.memoryUsage(); 
{ rss: 62652416,
  heapTotal: 51437568,
  heapUsed: 45911664,
  external: 8951 }

// 解除对象 b 的引用  
> b = null;
null

// 再次执行垃圾回收
> global.gc();
undefined

// 解除 b 的引用以后,heapUsed 变回 4M 左右
// 说明 WeakMap 中的那个长度为 5*1024*1024 的数组被销毁了
> process.memoryUsage(); 
{ rss: 20639744,
  heapTotal: 8425472,
  heapUsed: 3979792,
  external: 8956 }

上面代码中,只要外部的引用消失,WeakMap 内部的引用,就会自动被垃圾回收清除。由此可见,有了它的帮助,解决内存泄漏就会简单很多。

六、参考链接

(完)

 

JavaScript数据结构和算法

转自:https://github.com/zoro-web/blog

前言

在过去的几年中,得益于Node.js的兴起,JavaScript越来越广泛地用于服务器端编程。鉴于JavaScript语言已经走出了浏览器,程序员发现他们需要更多传统语言(比如C++和Java)提供的工具。这些工具包括传统的数据结构(如链表,栈,队列,图等),也包括传统的排序和查找算法。本文主要是总结什么情况下使用何种数据结构较好,并没有细讲里面的原理和实现方式,仅仅提供给阅读过《数据结构和算法》的同学作为总结和参考笔记,如果未细究过数据结构和算法的同学,本文也可以作为一个方向,希望能引导你去深究数据结构和算法。

为什么要学习数据结构和算法

数据结构和算法对于很多前端工程师来说,一直觉得是可有可无的,但其实不然,个人觉得,前端工程师其实是最需要重视数据结构和算法的人,因为前端所做的东西是用户访问网站第一眼看到的东西,特别在移动浪潮到来之后,对用户体验越来越高,对前端提出了更高的要求,面对越来越复杂的产品,需要坚实的数据结构和算法基础才能驾驭。
如果没有学习过计算机科学的程序员,当我们在处理一些问题时,比较熟悉的数据结构就是数组,数组无疑是一个很好的选择。但很多时候,对于很多复杂的问题,数组就显得太过简陋了,当学习了数据结构和算法之后,对于很多编程问题,当想到一个合适的数据结构后,设计和实现解决这些问题的算法就手到擒来。

相关知识点——数据结构、排序算法和查找算法

相关讲解细分:
数据结构:列表、栈、队列、链表、字典、散列、图和二叉查找树
排序算法:冒牌排序、选择排序、插入排序、希尔排序、归并排序和快速排序
查找算法:顺序查找和二分查找

列表

在日常生活中,人们经常使用列表:待办事项列表、购物清单、最佳十名榜单等等。而计算机程序也在使用列表,在下面的条件下,选择列表作为数据结构就显得尤为有用:

  • 数据结构较为简单
  • 不需要在一个长序列中查找元素,或者对其进行排序

反之,如果数据结构非常复杂,列表的作用就没有那么大了。

栈是一种特殊的列表,栈内的元素只能通过列表的一端访问,这一端称为栈顶。想象一下,我们平常在饭馆见到的一摞盘子就是现实世界常见的栈的例子,只能从最上面取盘子,盘子洗干净后,也只能放在最上面。栈被称为一种后入先出的数据结构。是一种高效的数据结构,因为数据只能在栈顶添加或删除,所以这样的操作很快。
使用条件:

  • 只要数据的保存满足后入先出或先进后出的原理,都优先考虑使用栈

images

队列

队列也是一种列表,不同的是队列只能在队尾插入元素,在队首删除元素。想象一下,我们在银行排队,排在最前面的人第一个办理业务,而后面来的人只能排在队伍的后面,直到轮到他们为止。
使用条件:

  • 只要数据的保存满足先进先出、后入后出的原理,都优先考虑使用队列

常见应用场景:

  • 队列主要用在和时间有关的地方,特别是操作系统中,队列是实现多任务的重要机制
  • 消息机制可以通过队列来实现,进程调度也是使用队列来实现

images

链表

链表也是一种列表,为什么需要出现链表,JavaScript中数组的主要问题时,它们被实现成了对象,与其他语言(比如C++和Java)的数组相对,效率很低。如果你发现数组在实际使用时很慢,就可以考虑使用链表来代替它。
使用条件:

  • 链表几乎可以用在任何可以使用一维数组的情况中。如果需要随机访问,数组仍然是更好的选择。

images

字典

字典是一种以键-值对行驶存储数据的数据结构,JavaScript中的Object类就是以字典的形式设计的。JavaScript可以通过实现字典类,让这种字典类型的对象使用起来更加简单,字典可以实现对象拥有的常见功能,并相应拓展自己想要的功能,而对象在JavaScript编写中随处可见,所以字典的作用也异常明显了。

散列

散列(也称为哈希表)是一种的常用的数组存储技术,散列后的数组可以快速地插入或取用。散列使用的数据结构叫做散列表。在散列表上插入、删除和取用数据都非常快,但对于查找操作来说却效率低下,比如查找一组数组中的最大值和最小值。这些操作需要求助于其他数据结构,比如下面介绍的二叉查找树。

散列表在JavaScript中可以基础数组去进行设计。数组的长度是预先设定的,所有元素根据和该元素对应的键,保存在数组的特定位置,这里的键和对象的键是类型的概念。使用散列表存储数组时,通过一个散列函数将键映射为一个数字,这个数字的范围是0到散列表的长度。

即使使用一个高效的散列函数,依然存在将两个键映射为同一个值得可能,这种现象叫做碰撞。常见碰撞的处理方法有:开链法和线性探测法(具体概念有兴趣的可以网上自信了解)

使用条件:

  • 可以用于数据的插入、删除和取用,不适用于查找数据

images

图由边的集合及顶点的集合组成。地图是我们身边很常见的现实场景,比如每两个城镇都由某种道路相连。上面的每个城镇可以看作一个顶点,连接城镇的道路便是边。边由顶点对(v1, v2)定义,v1和v2分别是图中的两个顶点。顶点也有权重,也成为成本。如果一个图的顶点对是有序的,则称之为有向图(例如常见的流程图),反之,称之为无序图。
使用场景(用图对现实中的系统建模):

  • 交通系统,可以用顶点表示街道的十字路口,边可以表示街道。加权的边可以表示限速或者车道的数量。可以用该系统判断最佳路线及最有可能堵车的街道。
  • 任何运输系统都可以用图来建模。比如,航空公司可以用图来为其飞行系统建模。将每个机场看成顶点,将经过两个顶点的每条航线看作一条边。加权的边可以表示从一个机场到另一个机场的航班成本,或两个机场间的距离,这取决于建模的对象是什么。

搜索图的算法主要有两种: 深度优先搜索和广度优先搜索。

二叉树和二叉查找树

树是计算机科学中经常用到的一种数据结构。树是一种非线性的数据结构,以分层的方式存储数据。
二叉树每个节点的子节点不允许超过两个。一个父节点的两个子节点分别称为左节点和右节点,通过将子节点的个数限定为2,可以写出高效的程序在树中插入、查找和删除数据。
二叉查找树(BST)是一种特殊的二叉树,相对较小的值保存在左节点中,较大的值保存在右节点中。这一特性使得查找的效率很高,对于数值型和非数值型的数据,比如单词和字符串,都是如此。
二叉查找树实现方法

function Node(data, left, right) { // 创建节点
  this.data = data;
  this.left = left;
  this.right = right;
  this.show = show
}

function show () { // 显示树的数据
  return this.data
}

function BST () { // 二叉查找树类
  this.root = null;
  this.insert = insert;
  this.inOrder = inOrder; // inOrder是遍历BST的方式
}

function insert (data) { // 向树中插入数据
  var n = new Node(data, null, null)
  if (this.root == null) {
    this.root = n;
  } else {
    var current = this.root;
    var parent;
    while (true) {
	  parent = current
	  if (data < current.data) {
		current = current.left;
		if (current == null) {
		  parent.left = n;
		  break;
		}
	  } else {
		current = current.right;
		if (current == null) {
		  parent.right = n;
		  break;
		}
	  }
    }
  }
}

images
遍历BST的方式有三种:中序遍历(以升序访问树中所有节点,先访问左节点,再访问根节点,最后访问右节点)、先序遍历(先访问根节点,再以同样的方式访问左节点和右节点)、后序遍历(先访问叶子节点,从左子树到右子树,再到根节点)

排序算法

基本排序算法

基本排序算法,其核心思想是指对一组数组按照一定的顺序重新排列。重新排列时用到的技术是一组嵌套的for循环。其中外循环会遍历数组的每一项,内循环则用于比较元素。

冒泡排序

冒泡排序是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。

function bubbleSort (arr) {
	var i = arr.length;
	while (i > 0) {
		var pos = 0
		for (var j = 0; j < i; j++) {
			if (arr[j] > arr[j+1]){
				pos = j
				var temp = arr[j]
				arr[j] = arr[j+1]
				arr[j+1] = temp
			}
		}
		i = pos
	}
	return arr
}
var arr=[3,44,38,5,47,15,36,26,27,2,46,4,19,50,48];
console.log(bubbleSort(arr));//[2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]

images

选择排序

选择排序(Selection-sort)是一种简单直观的排序算法。它的工作原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。

function selectionSort (arr) {
	var len = arr.length;
	var minIndex, temp;
	for (var i = 0; i < len-1; i++) {
		minIndex = i;
		for (var j = i+1; j < len; j++) {
			if (arr[j] < arr[minIndex]) {
				minIndex = j
			}
		}
		temp = arr[minIndex]
		arr[minIndex] = arr[i]
		arr[i] = temp
	}
	return arr
}
var arr=[3,44,38,5,47,15,36,26,27,2,46,4,19,50,48];
console.log(selectionSort(arr));//[2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]

images

插入排序

插入排序(Insertion-Sort)的算法描述是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。

function insertSort (arr) {
	var len = arr.length
	for (i = 1; i < len; i++) {
		var key = arr[i]
		var j = i - 1
		while (j >= 0 && arr[j] > key) {
			arr[j+1] = arr[j]
			j--;
		}
		arr[j+1] = key
	}
	return arr
}
var arr=[3,44,38,5,47,15,36,26,27,2,46,4,19,50,48];
console.log(insertSort(arr));//[2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]

images

高级排序算法

高级数据排序算法,通常用于处理大型数据集的最高效排序算法,它们处理的数据集可以达到上百万个元素,而不仅仅是几百个或者几千个,下面我们将介绍希尔排序、归并排序和快速排序。

希尔排序

1959年Shell发明,第一个突破O(n^2)的排序算法;是简单插入排序的改进版;它与插入排序的不同之处在于,它会优先比较距离较远的元素。希尔排序又叫缩小增量排序。
希尔排序的核心在于间隔序列的设定。既可以提前设定好间隔序列,也可以动态的定义间隔序列。

function shellSort (arr) {
	var len = arr.length;
	var temp, gap = 1;
	while (gap < len /3 ) {
		gap = gap * 3 + 1
	}
	while (gap >= 1) {
		for (var i = gap; i < len; i++) {
			temp = arr[i]
			for (var j = i - gap; j >= 0 && arr[j] > temp; j-=gap) {
				arr[j+gap] = arr[j]
			}
			arr[j+gap] = temp
		}
		gap = (gap - 1) / 3
	}
	return arr
}
var arr=[3,44,38,5,47,15,36,26,27,2,46,4,19,50,48];
console.log(shellSort(arr));//[2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]

5555

归并排序

归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。归并排序是一种稳定的排序方法。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。

function mergeSort (arr) {
	var len = arr.length
	if (len < 2) {
		return arr
	}
	var middle = Math.floor(len / 2)
	var left = arr.slice(0, middle)
	var right = arr.slice(middle)
	return merge (mergeSort(left), mergeSort(right));
}
function merge (left, right) {
	var result = []
	while (left.length && right.length) {
		if (left[0] < right[0]) {
			result.push(left.shift())
		} else {
			result.push(right.shift())
		}
	}
	while (left.length) {
		result.push(left.shift())
	}
	while (right.length) {
		result.push(right.shift())
	}
	return result
}
var arr=[3,44,38,5,47,15,36,26,27,2,46,4,19,50,48];
console.log(mergeSort(arr));

images

快速排序

快速排序是处理 大数据集最快的排序算法之一。它是一种分而治之的算法,通过递归的方法将数据依次分解为包含较小元素和较大元素的不同子序列。该算法不断重复这个步骤知道所有数据都是有序的。
这个算法首先要在列表中选择一个元素作为基准值。数据排序围绕基准值进行,将列表中小于基准值的元素移到数组的底部,将大于基准值的元素移到数组的顶部。

function qSort (arr) {
	if (arr.length == 0) {
		return []
	}
	var left = []
	var right = []
	var pivot = arr[0]
	for (var i = 1; i < arr.length; i++) {
		if (arr[i] < pivot) {
			left.push(arr[i])
		} else {
			right.push(arr[i])
		}
	}
	return qSort(left).concat(pivot, qSort(right))
}
var arr=[3,44,38,5,47,15,36,26,27,2,46,4,19,50,48];
console.log(qSort(arr));

images

检索算法

在列表中查找数据有两种方式:顺序查找和二分查找。顺序查找适用于元素随机排列的列表;二分查找适用于元素已排序的列表。二分查找效率更高,但是必须在进行查找之前花费额外的时间将列表中的元素排序。

顺序查找

对于查找数据,最简单的方法就是从列表的第一个元素开始对列表元素逐个进行判断,直到找到了想要的结果,或者直到列表结尾也没有找到。这种方法称为顺序查找,有时也被称为线性查找。

function seqSearch (arr, data) {
  for (var i = 0; i < arr.length; i++) {
    if (arr[i] == data) {
      return i;
    }
  }
  return -1;
}
var arr=[3,44,38,5,47,15,36,26,27,2,46,4,19,50,48];
console.log(seqSearch(arr, 15))

二分查找

二分法查找,也称折半查找,是一种在有序数组中查找特定元素的搜索算法。查找过程可以分为以下步骤:

  • 首先,从有序数组的中间的元素开始搜索,如果该元素正好是目标元素(即要查找的元素),则搜索过程结束,否则进行下一步。
  • 如果目标元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半区域查找,然后重复第一步的操作。
  • 如果某一步数组为空,则表示找不到目标元素。
function binSearch (arr, data) {
	var low = 0;
	var high = arr.length - 1
	while (low <= high) {
		var middle = Math.floor((low + high) / 2)
		if (arr[middle] < data) {
			low = middle + 1
		} else if (arr[middle] > data) {
			high = middle - 1
		} else {
			return middle
		}
	}
	return -1
}
var arr=[3,44,38,5,47,15,36,26,27,2,46,4,19,50,48];
console.log(binSearch(arr, 15))

最后

  • 非常谢谢观看,看到这里相信很不容易,毕竟相对枯燥的知识点很多,但却是必不可少的。希望这篇文章能让你对数据结构和算法有一个新的认识,或者产生一些新的想法,那么写这篇文章的意义就达到了,当然发现文章写得有问题的,也非常欢迎指出,一起共同成长。
  • 欢迎关注我的github—-https://github.com/zoro-web/blog,你的关注是我整理知识的更大动力,我的博客会定期整理发布一些文章。

你有必要知道的25个JavaScript面试题

原文地址:http://www.jb51.net/article/77140.htm

 

1、使用 typeof bar === “object” 判断 bar 是不是一个对象有神马潜在的弊端?如何避免这种弊端?

使用 typeof 的弊端是显而易见的(这种弊端同使用 instanceof):

1
2
3
4
5
6
let obj = {};
let arr = [];
console.log(typeof obj === ‘object’); //true
console.log(typeof arr === ‘object’); //true
console.log(typeof null === ‘object’); //true

从上面的输出结果可知,typeof bar === “object” 并不能准确判断 bar 就是一个 Object。可以通过 Object.prototype.toString.call(bar) === “[object Object]” 来避免这种弊端:

1
2
3
4
5
6
let obj = {};
let arr = [];
console.log(Object.prototype.toString.call(obj)); //[object Object]
console.log(Object.prototype.toString.call(arr)); //[object Array]
console.log(Object.prototype.toString.call(null)); //[object Null]

另外,为了珍爱生命,请远离 ==:

而 [] === false 是返回 false 的。

2、下面的代码会在 console 输出神马?为什么?

1
2
3
4
5
6
(function(){
 var a = b = 3;
})();
console.log(“a defined? ” + (typeof a !== ‘undefined’));
console.log(“b defined? ” + (typeof b !== ‘undefined’));

这跟变量作用域有关,输出换成下面的:

1
2
console.log(b); //3
console,log(typeof a); //undefined

拆解一下自执行函数中的变量赋值:

b = 3;
var a = b;

所以 b 成了全局变量,而 a 是自执行函数的一个局部变量。

3、下面的代码会在 console 输出神马?为什么?

1
2
3
4
5
6
7
8
9
10
11
12
13
var myObject = {
 foo: “bar”,
 func: function() {
 var self = this;
 console.log(“outer func: this.foo = ” + this.foo);
 console.log(“outer func: self.foo = ” + self.foo);
 (function() {
 console.log(“inner func: this.foo = ” + this.foo);
 console.log(“inner func: self.foo = ” + self.foo);
 }());
 }
};
myObject.func();

第一个和第二个的输出不难判断,在 ES6 之前,JavaScript 只有函数作用域,所以 func 中的 IIFE 有自己的独立作用域,并且它能访问到外部作用域中的 self,所以第三个输出会报错,因为 this 在可访问到的作用域内是 undefined,第四个输出是 bar。如果你知道闭包,也很容易解决的:

1
2
3
4
(function(test) {
 console.log(“inner func: this.foo = ” + test.foo); //’bar’
 console.log(“inner func: self.foo = ” + self.foo);
}(self));

如果对闭包不熟悉,可以参考本文:从作用域链谈闭包

4、将 JavaScript 代码包含在一个函数块中有神马意思呢?为什么要这么做?

换句话说,为什么要用立即执行函数表达式(Immediately-Invoked Function Expression)。

IIFE 有两个比较经典的使用场景,一是类似于在循环中定时输出数据项,二是类似于 JQuery/Node 的插件和模块开发。

1
2
3
4
5
for(var i = 0; i < 5; i++) {
 setTimeout(function() {
 console.log(i);
 }, 1000);
}

上面的输出并不是你以为的0,1,2,3,4,而输出的全部是5,这时 IIFE 就能有用了:

1
2
3
4
5
6
7
for(var i = 0; i < 5; i++) {
 (function(i) {
 setTimeout(function() {
 console.log(i);
 }, 1000);
 })(i)
}

而在 JQuery/Node 的插件和模块开发中,为避免变量污染,也是一个大大的 IIFE:

1
2
3
(function($) {
 //代码
 } )(jQuery);

5、在严格模式(‘use strict’)下进行 JavaScript 开发有神马好处?

消除Javascript语法的一些不合理、不严谨之处,减少一些怪异行为;
消除代码运行的一些不安全之处,保证代码运行的安全;
提高编译器效率,增加运行速度;
为未来新版本的Javascript做好铺垫。
6、下面两个函数的返回值是一样的吗?为什么?

1
2
3
4
5
6
7
8
9
10
11
12
13
14
function foo1()
{
 return {
 bar: “hello”
 };
}
function foo2()
{
 return
 {
 bar: “hello”
 };
}

在编程语言中,基本都是使用分号(;)将语句分隔开,这可以增加代码的可读性和整洁性。而在JS中,如若语句各占独立一行,通常可以省略语句间的分号(;),JS 解析器会根据能否正常编译来决定是否自动填充分号:

1
2
3
var test = 1 +
2
console.log(test); //3

在上述情况下,为了正确解析代码,就不会自动填充分号了,但是对于 return 、break、continue 等语句,如果后面紧跟换行,解析器一定会自动在后面填充分号(;),所以上面的第二个函数就变成了这样:

1
2
3
4
5
6
7
function foo2()
{
 return;
 {
 bar: “hello”
 };
}

所以第二个函数是返回 undefined。

7、神马是 NaN,它的类型是神马?怎么测试一个值是否等于 NaN?

NaN 是 Not a Number 的缩写,JavaScript 的一种特殊数值,其类型是 Number,可以通过 isNaN(param) 来判断一个值是否是 NaN:

1
2
3
4
5
6
7
8
9
console.log(isNaN(NaN)); //true
console.log(isNaN(23)); //false
console.log(isNaN(‘ds’)); //true
console.log(isNaN(‘32131sdasd’)); //true
console.log(NaN === NaN); //false
console.log(NaN === undefined); //false
console.log(undefined === undefined); //false
console.log(typeof NaN); //number
console.log(Object.prototype.toString.call(NaN)); //[object Number]

ES6 中,isNaN() 成为了 Number 的静态方法:Number.isNaN().

8、解释一下下面代码的输出

1
2
console.log(0.1 + 0.2); //0.30000000000000004
console.log(0.1 + 0.2 == 0.3); //false

JavaScript 中的 number 类型就是浮点型,JavaScript 中的浮点数采用IEEE-754 格式的规定,这是一种二进制表示法,可以精确地表示分数,比如1/2,1/8,1/1024,每个浮点数占64位。但是,二进制浮点数表示法并不能精确的表示类似0.1这样 的简单的数字,会有舍入误差。

由于采用二进制,JavaScript 也不能有限表示 1/10、1/2 等这样的分数。在二进制中,1/10(0.1)被表示为 0.00110011001100110011…… 注意 0011 是无限重复的,这是舍入误差造成的,所以对于 0.1 + 0.2 这样的运算,操作数会先被转成二进制,然后再计算:

0.1 => 0.0001 1001 1001 1001…(无限循环)
0.2 => 0.0011 0011 0011 0011…(无限循环)
双精度浮点数的小数部分最多支持 52 位,所以两者相加之后得到这么一串 0.0100110011001100110011001100110011001100…因浮点数小数位的限制而截断的二进制数字,这时候,再把它转换为十进制,就成了 0.30000000000000004。

对于保证浮点数计算的正确性,有两种常见方式。

一是先升幂再降幂:

1
2
3
4
5
6
7
8
9
10
function add(num1, num2){
 let r1, r2, m;
 r1 = (”+num1).split(‘.’)[1].length;
 r2 = (”+num2).split(‘.’)[1].length;
 m = Math.pow(10,Math.max(r1,r2));
 return (num1 * m + num2 * m) / m;
}
console.log(add(0.1,0.2)); //0.3
console.log(add(0.15,0.2256)); //0.3756

二是是使用内置的 toPrecision() 和 toFixed() 方法,注意,方法的返回值字符串。

1
2
3
4
function add(x, y) {
 return x.toPrecision() + y.toPrecision()
}
console.log(add(0.1,0.2)); //”0.10.2″

9、实现函数 isInteger(x) 来判断 x 是否是整数

可以将 x 转换成10进制,判断和本身是不是相等即可:

1
2
3
function isInteger(x) {
 return parseInt(x, 10) === x;
}

ES6 对数值进行了扩展,提供了静态方法 isInteger() 来判断参数是否是整数:

1
2
3
4
5
Number.isInteger(25) // true
Number.isInteger(25.0) // true
Number.isInteger(25.1) // false
Number.isInteger(“15”) // false
Number.isInteger(true) // false

JavaScript能够准确表示的整数范围在 -2^53 到 2^53 之间(不含两个端点),超过这个范围,无法精确表示这个值。ES6 引入了Number.MAX_SAFE_INTEGER 和 Number.MIN_SAFE_INTEGER这两个常量,用来表示这个范围的上下限,并提供了 Number.isSafeInteger() 来判断整数是否是安全型整数。

10、在下面的代码中,数字 1-4 会以什么顺序输出?为什么会这样输出?

1
2
3
4
5
6
(function() {
 console.log(1);
 setTimeout(function(){console.log(2)}, 1000);
 setTimeout(function(){console.log(3)}, 0);
 console.log(4);
})();

这个就不多解释了,主要是 JavaScript 的定时机制和时间循环,不要忘了,JavaScript 是单线程的。详解可以参考 从setTimeout谈JavaScript运行机制。

11、写一个少于 80 字符的函数,判断一个字符串是不是回文字符串

1
2
3
4
function isPalindrome(str) {
 str = str.replace(/\W/g, ”).toLowerCase();
 return (str == str.split(”).reverse().join(”));
}

这个题我在 codewars 上碰到过,并收录了一些不错的解决方式,可以戳这里:Palindrome For Your Dome

12、写一个按照下面方式调用都能正常工作的 sum 方法

1
2
console.log(sum(2,3)); // Outputs 5
console.log(sum(2)(3)); // Outputs 5

针对这个题,可以判断参数个数来实现:

1
2
3
4
5
6
7
8
9
10
11
function sum() {
 var fir = arguments[0];
 if(arguments.length === 2) {
 return arguments[0] + arguments[1]
 } else {
 return function(sec) {
 return fir + sec;
 }
 }
}

13、根据下面的代码片段回答后面的问题

1
2
3
4
5
6
for (var i = 0; i < 5; i++) {
 var btn = document.createElement(‘button’);
 btn.appendChild(document.createTextNode(‘Button ‘ + i));
 btn.addEventListener(‘click’, function(){ console.log(i); });
 document.body.appendChild(btn);
}

1、点击 Button 4,会在控制台输出什么?

2、给出一种符合预期的实现方式

  • 1、点击5个按钮中的任意一个,都是输出5
  • 2、参考 IIFE。

14、下面的代码会输出什么?为什么?

1
2
3
4
5
6
var arr1 = “john”.split(”); j o h n
var arr2 = arr1.reverse(); n h o j
var arr3 = “jones”.split(”); j o n e s
arr2.push(arr3);
console.log(“array 1: length=” + arr1.length + ” last=” + arr1.slice(-1));
console.log(“array 2: length=” + arr2.length + ” last=” + arr2.slice(-1));

会输出什么呢?你运行下就知道了,可能会在你的意料之外。

reverse() 会改变数组本身,并返回原数组的引用。

slice 的用法请参考:slice

15、下面的代码会输出什么?为什么?

1
2
3
4
5
6
console.log(1 + “2” + “2”);
console.log(1 + +”2″ + “2”);
console.log(1 + -“1” + “2”);
console.log(+”1″ + “1” + “2”);
console.log( “A” – “B” + “2”);
console.log( “A” – “B” + 2);

输出什么,自己去运行吧,需要注意三个点:

多个数字和数字字符串混合运算时,跟操作数的位置有关

1
2
console.log(2 + 1 + ‘3’); / /‘33′
console.log(‘3′ + 2 + 1); //’321’

数字字符串之前存在数字中的正负号(+/-)时,会被转换成数字

1
2
console.log(typeof ‘3’); // string
console.log(typeof +’3′); //number

同样,可以在数字前添加 ”,将数字转为字符串

1
2
console.log(typeof 3); // number
console.log(typeof (”+3)); //string

对于运算结果不能转换成数字的,将返回 NaN

1
2
console.log(‘a’ * ‘sd’); //NaN
console.log(‘A’ – ‘B’); // NaN

这张图是运算转换的规则

16、

如果 list 很大,下面的这段递归代码会造成堆栈溢出。如果在不改变递归模式的前提下修善这段代码?

1
2
3
4
5
6
7
8
9
10
var list = readHugeList();
var nextListItem = function() {
 var item = list.pop();
 if (item) {
 // process the list item…
 nextListItem();
 }
};

原文上的解决方式是加个定时器:

1
2
3
4
5
6
7
8
9
10
var list = readHugeList();
var nextListItem = function() {
 var item = list.pop();
 if (item) {
 // process the list item…
 setTimeout( nextListItem, 0);
 }
};

解决方式的原理请参考第10题。

17、什么是闭包?举例说明

可以参考此篇:从作用域链谈闭包

18、下面的代码会输出什么?为啥?

1
2
3
for (var i = 0; i < 5; i++) {
 setTimeout(function() { console.log(i); }, i * 1000 );
}

请往前面翻,参考第4题,解决方式已经在上面了

19、解释下列代码的输出

1
2
3
4
console.log(“0 || 1 = “+(0 || 1));
console.log(“1 || 2 = “+(1 || 2));
console.log(“0 && 1 = “+(0 && 1));
console.log(“1 && 2 = “+(1 && 2));

逻辑与和逻辑或运算符会返回一个值,并且二者都是短路运算符:

逻辑与返回第一个是 false 的操作数 或者 最后一个是 true的操作数

1
2
3
console.log(1 && 2 && 0); //0
console.log(1 && 0 && 1); //0
console.log(1 && 2 && 3); //3

如果某个操作数为 false,则该操作数之后的操作数都不会被计算

逻辑或返回第一个是 true 的操作数 或者 最后一个是 false的操作数

1
2
3
console.log(1 || 2 || 0); //1
console.log(0 || 2 || 1); //2
console.log(0 || 0 || false); //false

如果某个操作数为 true,则该操作数之后的操作数都不会被计算

如果逻辑与和逻辑或作混合运算,则逻辑与的优先级高:

1
2
3
console.log(1 && 2 || 0); //2
console.log(0 || 2 && 1); //1
console.log(0 && 2 || 1); //1

在 JavaScript,常见的 false 值:

0, ‘0’, +0, -0, false, ”,null,undefined,null,NaN
要注意空数组([])和空对象({}):

1
2
3
4
console.log([] == false) //true
console.log({} == false) //false
console.log(Boolean([])) //true
console.log(Boolean({})) //true

所以在 if 中,[] 和 {} 都表现为 true:

20、解释下面代码的输出

1
2
console.log(false == ‘0’)
console.log(false === ‘0’)

请参考前面第14题运算符转换规则的图。

21、解释下面代码的输出

1
2
3
4
5
6
7
8
var a={},
 b={key:’b’},
 c={key:’c’};
a[b]=123;
a[c]=456;
console.log(a[b]);

输出是456。

22、解释下面代码的输出

1
console.log((function f(n){return ((n > 1) ? n * f(n-1) : n)})(10));

结果是10的阶乘。这是一个递归调用,为了简化,我初始化 n=5,则调用链和返回链如下:

23、解释下面代码的输出

1
2
3
4
5
(function(x) {
 return (function(y) {
 console.log(x);
 })(2)
})(1);

输出1,闭包能够访问外部作用域的变量或参数。

24、解释下面代码的输出,并修复存在的问题

1
2
3
4
5
6
7
8
9
10
11
var hero = {
 _name: ‘John Doe’,
 getSecretIdentity: function (){
 return this._name;
 }
};
var stoleSecretIdentity = hero.getSecretIdentity;
console.log(stoleSecretIdentity());
console.log(hero.getSecretIdentity());

将 getSecretIdentity 赋给 stoleSecretIdentity,等价于定义了 stoleSecretIdentity 函数:

1
2
3
4
var stoleSecretIdentity = function (){
 return this._name;
}
stoleSecretIdentity

的上下文是全局环境,所以第一个输出 undefined。若要输出 John Doe,则要通过 call 、apply 和 bind 等方式改变 stoleSecretIdentity 的this 指向(hero)。

第二个是调用对象的方法,输出 John Doe。

25、给你一个 DOM 元素,创建一个能访问该元素所有子元素的函数,并且要将每个子元素传递给指定的回调函数。

函数接受两个参数:

  • DOM
  • 指定的回调函数

原文利用 深度优先搜索(Depth-First-Search) 给了一个实现:

1
2
3
4
5
6
7
function Traverse(p_element,p_callback) {
 p_callback(p_element);
 var list = p_element.children;
 for (var i = 0; i < list.length; i++) {
 Traverse(list[i],p_callback); // recursive call
 }
}

以上就是为大家分享的25个JavaScript面试题,希望对大家参加面试有所帮助。